
Medical Equipment II - 2010 Chapter 15: Interaction of Photons and Charged Particles with Matter₍₃₎

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Pair Production

• High energy ($\gamma, e^{+} e^{-}$) interaction $h\nu_{0} = T_{+} + m_{e}c^{2} + T_{-} + m_{e}c^{2} = T_{+} + T_{-} + 2m_{e}c^{2}$.

- One can show that momentum is not conserved by the positron and electron if the former equation is satisfied.
 - Interaction takes place in the Coulomb field of another particle (usually a nucleus) that recoils to conserve momentum.
 - Cross section for pair production involving nucleus is κ_n .

Pair Production

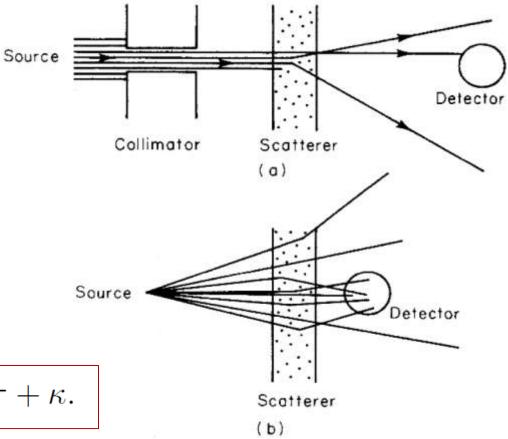
- Pair production with excitation or ionization of the recoil atom can take place at energies that are only slightly higher than the threshold
 - Cross section does not become appreciable until the incident photon energy exceeds 2.04 MeV
 - A free electron (rather than a nucleus) recoils to conserve momentum.

• $(\gamma, e^+ e^- e^-)$ process : Triplet production.

Total cross section:

$$\kappa = \kappa_n + \kappa_e$$

Linear Attenuation Coefficient


Narrow- vs. Broad-beam geometries

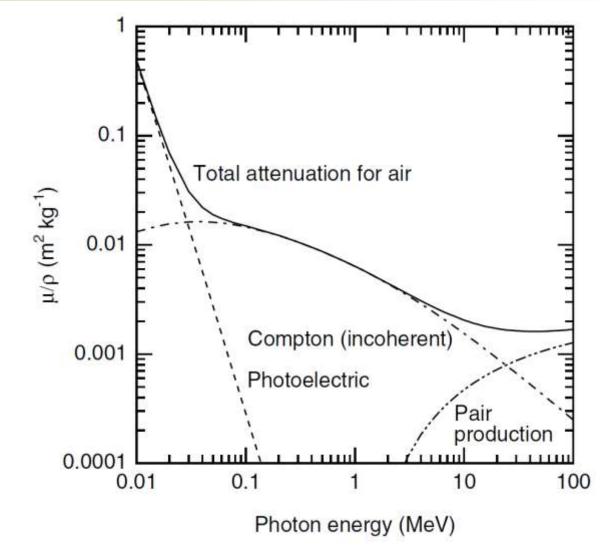
o Idealization ?

$$dN = -\frac{\sigma_{\text{tot}} N_A \rho}{A} N \, dz,$$
$$N(z) = N_0 e^{-\mu_{\text{atten}} z}$$

$$\mu_{\rm atten} = \frac{N_A \rho \sigma_{\rm tot}}{A}.$$

$$\sigma_{\rm tot} = \sigma_{\rm coh} + \sigma_{\rm incoh} + \tau + \kappa.$$

Mass Attenuation Coefficient


Mass attenuation coefficient Independent of density: very useful in gases

$$\frac{\mu_{\text{atten}}}{\rho} = \frac{N_A \sigma_{\text{tot}}}{A}. \qquad \blacktriangleright \qquad N(\rho z) = N_0 e^{-(\mu_{\text{atten}}/\rho)(\rho z)}.$$

 Additional advantage in incoherent scattering: Z/A is nearly ½ for all elements except H¹: minor variations over periodic table

$$\frac{\mu_{\text{atten}}}{\rho} = \frac{Z\sigma_C N_A}{A}$$

Mass Attenuation Coefficient

Compounds and Mixtures

Usual procedure for dealing with mixtures and compounds is to assume that each atom scatters independently. $w_i = \frac{a_i A_i}{A}$

$$\frac{\overline{n}}{N} = \sum_{i} \sigma_{i} (N_{T})_{i} = \left(\sum_{i} \sigma_{i} (N_{TV})_{i}\right) dz, \qquad (N_{TV})_{i} = \frac{M_{i}N_{A}}{A_{i}V} = \frac{w_{i}}{A_{i}}\rho N_{A}.$$

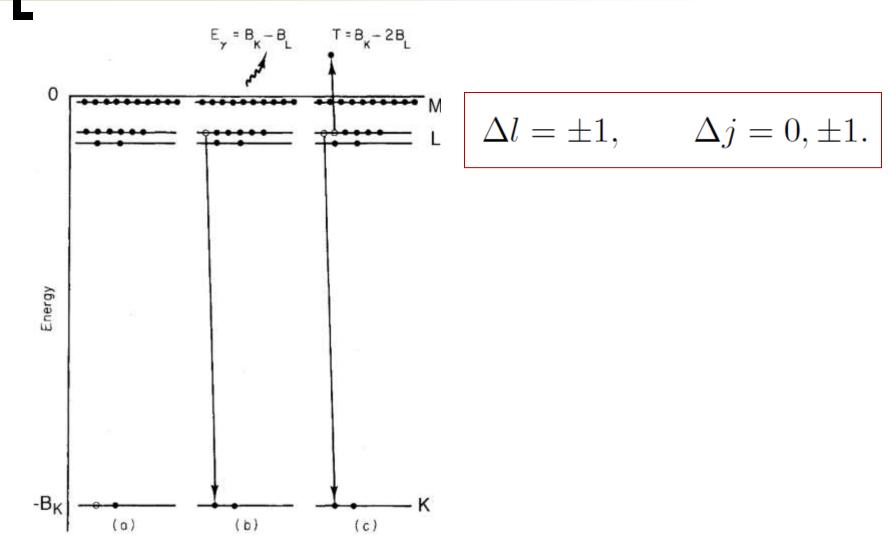
$$\sum_{i} \sigma_{i} (N_{TV})_{i} = \left(\sum_{i} \frac{a_{i}\sigma_{i}}{A_{\text{mol}}}\right) \rho N_{A}$$

$$= \left(\sum_{i} a_{i}\sigma_{i}\right) \frac{\rho N_{A}}{A_{\text{mol}}} = \sigma_{\text{mol}} (N_{TV})_{\text{mol}}.$$

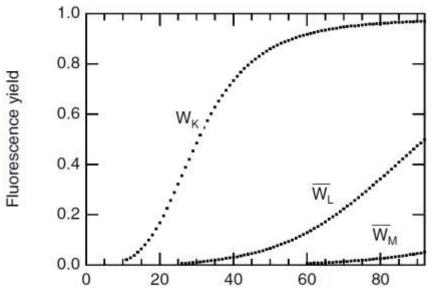
Compounds and Mixtures

- When a target entity (molecule) consists of a collection of subentities (atoms), we can say that in this approximation (all subentities interacting independently), the cross section per entity is the sum of the cross sections for each subentity.
 - For example, for CH4, total molecular cross section is $\sigma_{carbon} + 4\sigma_{hydrogen}$ and the molecular weight is $[(4 \times 1) + 12 = 16] \times 10^{-3}$ kg mol⁻¹

- Excited atom is left with a hole in some electron shell.
 - Similar state when an electron is knocked out by a passing charged particle or by certain transformations in the atomic nucleus
- Two competing processes:
 - Radiative transition: photon is emitted as an electron falls into the hole from a higher level,
 - Nonradiative or radiationless transition: emission of an Auger electron


Process	Total photon energy	Total electron energy	Atom excitation energy	Sum
Before photon strikes atom	$h\nu$	0	0	$h\nu$
After photoelectron is ejected [Fig. 15.12(a)]	0	$h\nu - B_K$	B_K	$h\nu$

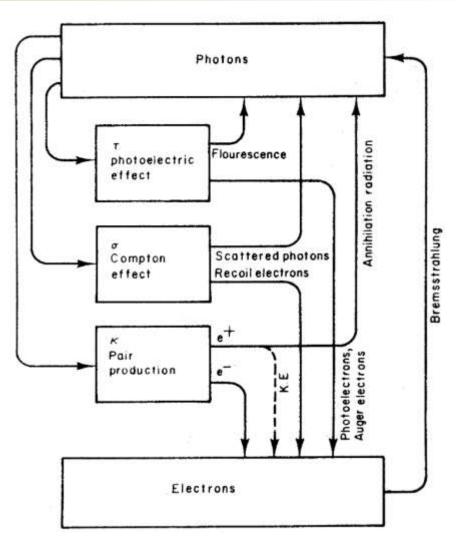
Case 1: Deexcitation by the emission of a K and an L photon


Emission of K fluorescence	$B_K - B_L$	$h\nu - B_K$	B_L	h u
photon [Fig. $15.12(b)$]				
Emission of L fluorescence	$B_K - B_L$,	$h\nu - B_K$	0	h u
photon	B_L			

Case 2: Deexcitation by emission of an Auger electron from the L shell

Emission of Auger electron	0	$h\nu - B_K,$	$2B_L$	h u
[Fig. 15.12(c)]		$B_K - 2B_L$		
First L -shell hole filled by	B_L	$h\nu - B_K,$	B_L	h u
fluorescence		$B_K - 2B_L$		
Second <i>L</i> -shell hole filled	B_L, B_L	$h\nu - B_K,$	0	h u
by fluorescence		$B_K - 2B_L$		

- Probability of photon emission is called the fluorescence yield, W_K .
 - Auger yield is $A_K = 1 W_K$.
 - L or higher shells: consider yield for each subshell

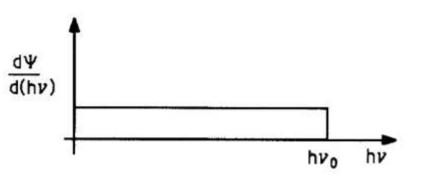

Coster–Kronig transitions

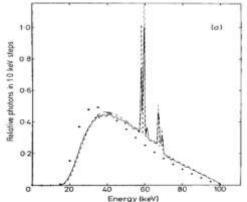
- Radiationless transitions within the subshell
- Hole in L_I-shell can be filled by an electron from the L_{III}-shell with the ejection of an M-shell electron

Super-Coster–Kronig transitions

- Involves electrons all within same shell (e.g., all M)
- Auger cascade
 - Bond breaking important for radioactive isotopes

Energy Transfer from Photons to Electrons




Bremsstrahlung

- Classically, a charged particle at rest creates an electric field which is inversely proportional to squared distance from charge.
- When in motion with a constant velocity it creates both electric and magnetic fields.
- When accelerated, additional electric and magnetic fields appear
 - fall off less rapidly—inversely with the first power of distance from charge with continuous distribution.

Bremsstrahlung

- Quantum-mechanically, when a charged particle undergoes acceleration or deceleration, it emits photons.
- Radiation is called deceleration radiation, braking radiation, or *bremsstrahlung*.
 - It has a continuous distribution of frequencies up to some maximum value.

Problem Assignments

- Information posted on web site
- Chapter 15 problems: 17, 18, 19, 21, 23, 24, 25, 27