BIOMEDICAL ENGINEERING DEPARTMENT 4TH YEAR MEDICAL EQUIPMENT

MRI MIDTERM EXAM 1

February 2001 TIME ALLOWED: One Hour

SOLVE AS MUCH AS YOU CAN. SHOW YOUR WORK ON A SEPARATE PAPER.

I. Answer the following questions by selecting one answer

 [3 points] Magnetic fields in the Tesla range are used for MRI because, a) they are easier to generate b) they allow a stronger signal to be obtained c) they provide better T1/T2 values d) the existing magnets happen to be in that range 				
 2. [3 points] Rotating frame is preferred to One) Rotating frame makes it easier to fo Two) It provides a nicer polar representation Three) It makes it easier to image claustrop Four) It makes it faster to perform imagin Five) It reduces motion artifacts) lab frame because, ollow the motion of net magnetization tion instead of the usual Cartesian form ohobic patients ^{1g}			
 3. [3 points] Net magnetization can be observed only when, a) it is in the rotating frame of reference b) it is in the lab frame c) it is in the equilibrium position d) it is in the transverse plane e) it is in the same direction as B0. 				
 4. [3 points] Equilibrium position of net n followed by a delay that is equal to, a) 5 T2 b) TR c) TE 	nagnetization can be reached after an RF pulse is d) 5 T2* e) 5 T1			
 5. [3 points] To control the slice thickness of an RF pulse, one can do the following: a) Change the modulation of the RF pulse b) Change the duration of the RF pulse c) Change the bandwidth of the RF pulse d) Change the amplitude of the RF pulse Six) Change the direction of the X and Y RF coils 				
6. [3 points] To increase the resolution in a) use higher sampling rate for same durationc) use higher sampling for longer duratione) use a thinner slice selection	 the frequency encoding direction for the same FOV, b) use same sampling rate for longer duration d) apply additional phase encoding 			
7. [3 points] The key component for spatial encoding in MRI systems is,a) main magnetb) quadrature coilsc) gradient coilsd) shim coilse) gantry				
 8. [3 points] Active shielding differs from passive shielding because, One) it offers longer distance to reference fringe field lines Two) it offers shorter distance to reference fringe field lines Three) it has the capability to be turned on and off upon demand Four) it offers better shielding for the patient inside the magnet Five) it has lower image noise 				

9. [3 points] In conventional inversion recovery Fourier imaging, a single row in the k-space is filled within each:

a) Scan time	b) TE period	c) TR period	d) RF Excitation	e) TI period	
 10. [3 points] Quenching results when, One) fire erupts inside the magnet Two) Large and claustrophobic patients getting stuck inside the magnet Three) Active shielding not working properly Four) Superconductors becoming more resistive Five) Improper mains voltage supply. 					
11. [3 points] 5a) high field strd) low field hor	Гhe advantage of s ength mogeneity	superconducting ma b) high capital cost e) water cooling	ngnets is, t c) in	tense fringe field	
 12. [3 points] A T2*-weighted pulse sequence can be, a) A spin-echo sequence with long TR and long TE b) A gradient echo sequence with short TR and short TE c) A spin-echo sequence with short TR and long TE d) A gradient sequence with long TR and long TE e) A spin-echo sequence with long TR and short TE 					
13. [3 points] A of 1kHz will se a) 1 cm	slice selection gra lect a slice of thicl b) 1 mm	adient of 5 mT/m i xness: c) 2 mm	f combined with an d) 5 mm	RF pulse of bandwidth e) 8 mm	
 14. [3 points] To acquire 10 1-mm thick 128x256 slices with TR=3 sec and TE=70ms and , we can only use: a) 3-D acquisition with slab width=1cm b) Frequency encoding in 3 different directions c) Time of flight principle d) Multiple overlapped thin slab acquisition Six) multi-slice acquisition with slice thickness = 2 mm 					
 15. [3 points] In a multi-slice TOF MRA imaging sequence, the scan parameters were: TR/TE: 300/20 msec, FOV: 20cm x 20cm, Matrix 256x256, Number of slices: 128, slice thickness: 5mm, NEX: 2, flip angle: 30 degrees. The shortest total acquisition time for this sequence is approximately: One) 18 minutes Two) 245 minutes Three) 2 minutes Four) 9 minutes e) Other: 					
16. [3 points] I a) bits	mage resolution ca b) lp/mm	an be expressed in u c) 1/sec	units of, d) m	nm/sec e) points	
17. [3 points] M One) Fresh tissues Three) Fluid v Four) Freque	IRA based on TC blood contrast wit /s. solid matter co ency shift of signa	OF relies on the follo h stationary tissues ntrast l from moving bloo	owing phenomenon b) Stationary d) Tissue mc d cells	blood contrast with	
18. [3 points] Inversion time for suppressing fat (T1=300 ms) in an image is approximately,a) 400 msb) 800 msc) 200 msd) 1 sece) other:					

19. [3 points] In designing an RF pulse to select a 5mm slice a distance of 5 cm from the magnet isocenter in a 1.5T magnet, if the slice selection gradient is set at 5mT/m and the desired flip angle is ???, a proper design for the duration of a rectangular RF pulse can be selected approximately as:

Ône) 5 msec b)1 msec c) 0.5 msec d) 0.1 msec e)Other:

20. [3 points] Relaxation times are defined as,

- One) time required for magnet to rest in between scans
- Two) time required for coils to cool off after use
- Three) time required for net magnetization to recover
- Four) time required for patients to recover after MRI scan
- Five) time required for k-space to be collected

II. Answer the following questions by either TRUE or FALSE:

- 21.[2 Points] People with dental implants can undergo MRI scans.
- 22.[2 Points] People with pace makers can undergo MRI scans.
- 23.[2 Points] The MRI scanning room contains the operating console and the gantry.
- 24.[2 Points] CRT monitors are preferred to LCD monitors for MRI.
- 25.[2 Points] For a small MRI clinic in the second floor in a building, open MRI is a good option.
- 26.[2 Points] Dynamic range describes how small image pixel size is.
- 27.[2 Points] The required sampling rate in the k-space is proportional to FOV.
- 28.[2 Points] Noise in the image depends mainly on your sampling bandwidth.
- 29.[2 Points] Phase encoding can be used to spatially encode any number of image/volume dimensions needed.
- 30.[2 Points] Frequency encoding characteristics determine the total acquisition time.
- 31.[2 Points] Sampling period determines the resolution in the read-out direction.
- 32.[2 Points] T1-weighted imaging is slower than T2-weighted imaging.
- 33.[2 Points] Phase encoding step that is too large results in an aliased image.
- 34.[2 Points] T2 contrast can only be obtained using spin echo sequences.
- 35.[2 Points] SNR depends on the number of phase encoding steps.

36. [10 points] Draw a properly labeled MR imaging sequence of your choice for T2* weighted imaging stating all necessary imaging parameters. Derive and draw a sketch for its k-space trajectory.

BEST OF LUCK