Ultrasound Bioinstrumentation

Topic 2 (lecture 3) Beamforming

Angular Spectrum

2D Fourier transform of aperture $A(f_X, f_Y; 0) = \iint_{-\infty}^{\infty} U(x, y, 0) \exp[-j2\pi(f_X x + f_Y y)] \, dx \, dy.$ $= \int_{-\infty}^{\infty} U(x, y, 0) = \iint_{-\infty}^{\infty} A(f_X, f_Y; 0) \exp[j2\pi(f_X x + f_Y y)] \, df_X \, df_Y.$

$$A\left(\frac{\alpha}{\lambda},\frac{\beta}{\lambda};0\right) = \iint_{-\infty}^{\infty} U(x, y, 0) \exp\left[-j2\pi\left(\frac{\alpha}{\lambda}x+\frac{\beta}{\lambda}y\right)\right] dx \, dy$$

Propagation of Angular Spectrum

$$A\left(\frac{\alpha}{\lambda},\frac{\beta}{\lambda};z\right) = A\left(\frac{\alpha}{\lambda},\frac{\beta}{\lambda};0\right)\exp(-\mu z)$$

$$\mu = \frac{2\pi}{\lambda} \sqrt{\alpha^2 + \beta^2 - 1}.$$

Propagation as a Linear Spatial Filter

Free space propagation transfer function

$$H(f_X, f_Y) = \begin{cases} \exp\left[j2\pi\frac{z}{\lambda}\sqrt{1-(\lambda f_X)^2-(\lambda f_Y)^2}\right] & \sqrt{f_X^2+f_Y^2} < \frac{1}{\lambda} \\ 0 & \text{otherwise.} \end{cases}$$

$$\alpha = \lambda f_X \quad \beta = \lambda f_Y$$
Input Angular
Spectrum at z=0
Output Angular
Spectrum at z=0
Output Angular
Spectrum at z

Fresnel Approximation

Paraxial (near field) approximation

$$\sqrt{1 - (\lambda f_X)^2 - (\lambda f_Y)^2} \approx 1 - \frac{(\lambda f_X)^2}{2} - \frac{(\lambda f_Y)^2}{2},$$

$$H(f_X, f_Y) = e^{jkz} \exp\left[-j\pi\lambda z \left(f_X^2 + f_Y^2\right)\right].$$

$$e^{jkz} \left[ik\left(-2 - 2\right)\right]$$

$$h(x, y) = \frac{e^{j\pi \alpha}}{j\lambda z} \exp\left[\frac{j\kappa}{2z}\left(x^2 + y^2\right)\right].$$

Fraunhofer Approximation

Far field approximation

$$z \gg \frac{k(\xi^2 + \eta^2)_{\max}}{2}$$

$$U(x, y) = \frac{e^{jkz}e^{j\frac{k}{2z}(x^2+y^2)}}{j\lambda z} \iint_{-\infty}^{\infty} U(\xi, \eta) \exp\left[-j\frac{2\pi}{\lambda z}(x\xi+y\eta)\right] d\xi d\eta.$$

Examples

Rectangular aperture

Circular aperture

Examples

- Array transducer
 - Separable
 - Solve two 1D problems

Field Calculation in Ultrasound

- Narrowband far-field analysis
 - Totally unrealistic model
 - Amazingly useful results
 - will be used to introduce key points
- Wideband analysis
 - Calculate at multiple wavelengths
 - Weighted sum based on frequency spectrum of pulse
- Research field calculation software
 - Field II (free)
 - PiezoFlex (commercial)

Beamformer: Role in an Imager

- Perhaps the most important building block.
 Soul of the machine?
- Probably the most expensive building block.
 - 30 -50% of parts & labor of a scanner

Beamformer History

- Before the mid-70s
 - Single element scanners, no beamformer necessary
- **1975 -1980**
 - Array based systems
 - Analog beamformation
 - Typically 32 channels
- Mid 1980s
 - High channel count systems (High = 128)
- Early 90s
 - Digital beamformation

Analog Beamformer

Hybrid Analog/Digital Beamformer

Digital Beamformer with Phase Shift

True Digital Beamformer

Digital Beamformer Hardware

Acoustic Wave Propagation

- Transmit voltages are typically in order of 100 V.
- These create pressures of appr. several 100 KPa.
- Typical tissue attenuation: 0.5 dB/(cm MHz)
 - Example: 10 cm penetration @ 5 MHz –25 dB one-way
- Backscatter from tissues -< 10% of incident pressure
- Transducer conversion efficiency –50 –75%
- If we wish to display 40 dB of info, we have to be able to handle > 100 dB of dynamic range

Typical System Organization

Receive Beamformer Functions

- Delay generation, dynamic and steering delays
- Apodization
- Summing of all delayed signals

Focusing and Steering Delays

Transmit Vectors and Focal Zones

Apodization

Main role

- apply a weighting function to aperture
- expand aperture w. receding wavefront
- maintain image uniformity
- supply walking aperture
- Implementation
 - o multipliers
 - truly complex control
- Highly beneficial impact on beam.

Types of Arrays and Beamformers

- Linear array beamformer
 - Generation of focusing delays
 - Beam steering by element selection
- Curvilinear array beamformer
 - Generation of focusing delays
 - Beam steering by element selection
- Phased array beamformer
 - Generation of focusing delays
 - Beam steering by phasing

Array Geometries

- Definition of azimuth, elevation
- Scanning angle shown, θ, in negative scan direction.
- Similar definitions for a curved array

Delay Calculation from Geometry

- Delay determination:
 - o simple path length difference
 - reference point: phase center
 - apply Law of Cosines
 - approximate for ASIC implementation
- In some cases, split delay into 2 parts:
 - o beam steering
 - o dynamic focusing

$$\tau = \frac{1}{c} \left[\sqrt{x^2 - 2rx\sin(\theta) + r^2} - r \right]$$

$$\tau = \tau_s + \tau_f$$

Transmit Beamforming

Resolution / Penetration Dilemma

sacrifices resolution

Coded Excitation

Coded Excitation improves sensitivity without resolution tradeoff

Coded Excitation: Example

Beam Compounding

- Compounding
 - suppress speckle to improve contrast resolution
- Spatial compounding
 - combine images from multiple angles
- Frequency compounding
 - o combine images from different frequencies

Targets of Ultrasound Imaging

First level

- Gross anatomy
- o basic measurements-e.g. fetal dimensions
- often tissue/fluid interfaces
- not very challenging
- Second level
 - o soft tissue characteristics-attenuation-speckle size
 - o minimum acoustic noise
 - o beam performance critical
- Third level
 - 3D/4D volume & surface rendering
 - o Beam performance critical

Quality Measures

- Image uniformity
 - large depth of penetration
 - reasonably uniform tissue texture
- Ability to bring out subtle changes.
 - minimal beam distortion
 - o minimal reverberant noise

Quality Control Phantoms

Anatomy of an Ultrasound Beam

- Near field or Fresnel zone
- Far field or Fraunhofer zone
- Near-to-far field transition, L

Anatomy of an Ultrasound Beam

- Spatial resolution, beamwidth
- Depth of field (DOF)
- F-number

$$bw = \frac{\lambda F}{D} = \lambda (f\#)$$

200

Beamformer Optimization

- Beam shape is improved by several processing steps:
 - Transmit apodization
 - Multiple transmit focal locations
 - Dynamic focusing
 - Dynamic receive apodization
 - Post-beamsum processing
- Example
 - Upper frame: fixed transmit focus
 - Lower frame: the above steps.

Channel Count Issues

- First 128 channel system introduced in 1983.
 - Huge majority of high-end systems are still at 128 channels.
- Does it make sense to go higher?
 - What's the cost/benefit trade-off?
 - Will the performance improve proportionately to the cost?
- What are some of the reasons for increasing it?
 - Elevation focusing
 - Real-time 3D/4D
 - Aberration correction

Elevation Beamforming

- Limited performance available with 1D designs
 - Poor beamformation away from elevation focus.
 - Limits on size of elevation aperture due to fixed focus.
 - Depth of focus inversely related to aperture size.
- Slice thickness improvement throughout image
 - Expanding aperture, dynamic focusing in elevation

Array Taxonomy

Aperture

Focus	Fixed	Discrete	Dynamic	Dynamic	Dynamic
	Static	Static	Dynamic, Symmetric	Dynamic, No Symmetry	Dynamic, Steerable

Value of Elevation Focusing

Phantom with 2 mm Spherical Cysts

Channel Count Requirements

- Let N = azimuthal channel count desired, e.g. 128.
- 1.25D
 - o no increase over N.
- **1.5D**
 - o assume 5 rows (3 independent), 3N channels required
- **1.75D**
 - with 5 rows, 5N channels required
- **2**D
 - sparse arrays w. 256 channels currently available, for 4D
- For ergonomic scanning, no. of cables is < 256–512

3D/4D Imaging Physics Constraints

- Speed of sound in body = 1540 m/sec
- Image quality, Field of view, Volume update rate
 - Can have any 2, not all 3
- Example:
 - 60°x 60°x 12 cm pyramid volume
 - 1°beam spacing \Rightarrow 3600 beams
 - 12 cm x 2 / 1540 m/s = 160 µsec per beam
 - \circ ⇒1.7 volumes / sec

Mechanical 4D Probes

Concurrent Multi-Line Acquisition

- Transmit beam is broader than receive beam
 - transmit is static focus, usually high f-number for max depth of field
- Create 2 –16 simultaneous receive beams within the transmit beam
- Substantial increase in volume rate!
- Essential for effective 4D imaging

Harmonic Imaging

- Perhaps most important innovation of the last 10 yrs
 - Now default mode in most cardiac scanners
- Discovery due to two major sources:
 - harmonic imaging for contrast agents
 - transducer bandwidth increases
- Arises from pressure dependence of sound speed
 - Compressional wave is faster than rarefactional
- Need to understand via simulations.

Harmonic Imaging: Beamforming

- During propagation, harmonics are formed.
- Rate of generation of 2nd harmonic proportional to p²
- This is equivalent to having an extra beamformer to narrow the beam shape.
- Beamformer requirements:
 - added transmit flexibility
 - increased filtering capacity
 - Higher receive signal bandwidth

Harmonic Imaging: Advantages

- Harmonics formed at main lobe
 - o narrower beams
 - lower sidelobes
- much acoustic noise generation at fundamental
 - o refraction from fat layers
 - reverberations near fat/muscle ...
 layers
- Optimization of beamformers may be necessary

Harmonic Imaging Example 1

Harmonic Imaging Example 2

Harmonic Imaging with Contrast

- Ultrasound contrast agent
 - Gas filled microbubbles
 - Strong harmonic response
- Main clinical goal: perfusion
 - Myocardial viability
 - Presence of tumors
- Tissue harmonics confuse the issue
- Trend toward low frequency (1.5 MHz) operation

Comparison between Tissue and Contrast Harmonic Imaging

Tissue Harmonics

- Goal: best tissue images
- Methods
 - Maximize harmonic energy
 - Higher f-numbers to allow harmonic energy to accumulate
 - Consider non-spherical focusing

Contrast Harmonics

- Goal: Show distribution of contrast agents
- Methods
 - Minimize propagation harmonic energy
 - Transmit harmonic energy that cancels propagation related harmonics.
 - Alternative phasing scheme

Focusing Theory

$$U_f(u,v) = \frac{\exp\left[j\frac{k}{2f}(u^2+v^2)\right]}{j\lambda f} \iint_{-\infty}^{\infty} U_l(x,y) \exp\left[-j\frac{2\pi}{\lambda f}(xu+yv)\right] dx \, dy.$$

Focusing Implementation

Reciprocity theorem

- Beamform at Transmit = beamform at Receive
- Overall beamform = Trans beamform x Rec beamform
- Static focusing
 - Static focal point
 - Used in transmission
- Dynamic focusing
 - Multiple focal points
 - Used in reception
 - Ideally, focused in all points

Phase Aberration

- Present ultrasound imaging
 - People are bags of water !
 - Crude approximation

- Practical Imaging
 - Fat and muscle degrade quality
 - Time-delay Errors from the abdominal wall are *10-50 Times Larger than beamformer delay quanta!*

Phase Aberration

- All beamformers use an assumption of constant speed of sound (1540 m/s in all ultrasound systems)
 - This assumption is not valid.
- In soft tissues, we have these speeds:
 - o fat 1440 m/s
 - o liver1510
 - o kidney1560
 - o muscle1570 (skeletal)
 - o Tumors1620
- This variation limits further spatial & contrast resolution improvements.

Phase Aberration

0

Point-like scatterer

Spherical wavefronts

Aberrating Layer, $C \neq C_0$ Transducer Geometric beamforming delays

Channel data poorly aligned

Phase Aberration Solutions

- Phase screen models
 - all aberrating sources near skin line
 - o deaberration can occur via time shifting of the echoes
 - amount of shift determined by correlations.
- Distributed aberrators
 - aberrating sources away from skin (as well as near it).
 Interference among refracted beams occurs.
 - far more complex deaberration methods than time shifting is needed.
- Inverse filtering
 - Assume a common source to all echoes
 - Blind systems identification

Phase Aberration Correction Results

Pancreas and Superior Mesenteric Artery

Uncorrected Corrected

Remaining Beamformer Issues

- Expanding aperture receive beamforming
- Synthetic aperture beamforming
- Digital beamforming
 - Hilbert transformation
 - Fractional period delay filters
 - Sampling issues

Problem Assignments

At the end of second lecture on Beamforming, there will be a problem assignment for you. Problems include programming tasks on Matlab or "miniprojects".